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General Discussion of Sensitivity 

Most modern system configurations consist of many interrelated components. 
These components may take the form of circuit parameters such a s  res i s tors ,  
capacitors and amplifiers described by impedance, admittance and similar rela- 
tionships or  they may take the form of entire sub-systems consisting of a number 
of individual elements collected together as a functioning group and described by a 
transfer function. Whether we  use impedance, admittance or  transfer functions to 
express the operation of sub-system components, the concept of sensitivity re- 
mains unchanged, and this discussion applies equally to both. The importance of 
sensitivity as an analytic tool in understanding systems operation depends largely 
on its ability to show the relative importance of variations among components of a 
system. Sensitivity shows the effect on system performance of the variation of an 
element within the system. The te rm parameter in this discussion will be used to 
designate the element of interest whether it be a resistor value or  some other 
quantile measuring sub-system characteristics. 

Partial  Derivatives 
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One method of measuring system sensitivity depends upon calculating the 
partial derivative of some system performance criterion with respect to a param- 
eter variation, This is expressed mathematically as follows : 

ac A = =  
P 

where C = a system performance criterion 
P = a system parameter 

This definitiofl of seils:tivity measures the incremental change in a system per- 
formance crlterion C clie to the change in performance parameter P with all other 
systems components held fixed. P, simple example would be the variation of the 

*This paper is a synopsis of a larger paper which, ior those interested in addi- 
tional information, is available from the f i r s t  author. Dr.  S. Park Chan i s  
associated with the Electrical Engineering Department of the University 
of Santa Clara. C FSTl 
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gain of an amplifier circuit due to a change in the value of one resistor within the 
circuit. 

Lo gar i t h m ic Sen s i tivi ty 

Developing the concept of sensitivity from one which measures the absolute 
change of a system performance criterion to one which measures the relative 
change of a performance criterion with respect to the relative change in a system 
parameter,  we have the logarithmic sensLivity expressed as follows: 

C .  P 
-- B InC 

1nP 
s = - -  

P P 

Logarithmic sensitivity is conveniently expressable a s  the percentage change in a 
performance criterion due to a percentage change in a parameter. 

Root Sensitivity 

The concept of root sensitivity developed in recent years  as an outgrowth of 
the root locus method of system analysis describes the change in the location of 
system poles and zeros on the complex frequency plane as a result of the change 
of a system parameter. The subject is sufficiently broad that it would obscure the 
primary purpose of this discussion and will not be treated in further detail. For 
those interested in pursuing root sensitivity further, References [8] and [ 9 ]  are 
recommended, 

The Relationship of the Computer to Sensitivity Analysis 

Because the computation of sensitivity is ordinarily a very tedious and error 
prone algebraic operation if done by hand, especially for large systems, the com- 
puter offers a great advantage; but the advantage is not obtained without difficulty. 
A systematic procedure must be developed to perform the required calculations 
in the computer and since digital computers do not conveniently differentiate the 
complex algebraic expressions representing system performance, this procedure 
must be structured around the more common numerical capabilities of computer 
operations. The prime objective of this discussion is to show how sensitivity and 
logarithmic sensitivity can be computed in a systematic way by means of computing 
certain transfer functions. The importance of this procedure hinges mainly on the 
fact that the problem of transfer function analysis has been well developed in com- 
puter technology. Many computer transfer function analysis programs have already 
been developed '-3 a high degree of refinement and these programs can now be used 
directly in the study of sensitivities. 
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A'Iathcmatical Development 

Tn order to show the mathematical development of several sensitivity rcln- 
tionships, the thcory of signal flow graphs a s  developed by Mason2t3, Coates5 , and 
others wil l  be used. The signal flon~ graph is ideal in that it shows topologically 
the behavior of a system and the relationships among parameters within the sys- 
tem, For our purposes the performance criterion in signal flow graph terniinol- 
ogy will be identical to the transmittance T selected for study within the system. 
With this in mind, we can s t a r t  the development by revealing the formal mathe- 
matical description of the signal flow graph. 

Any transmittance T of an arbi t rary connected signal flow graph N can be 
expressed as a function of the gain of any edge P within the graph, This fact was 
stated by Mason2 and Truxal14 and a formal proof is given here. 

Description of a Generalized Signal Flow Graph 

Figure 1 

Generalized Signal Flow Graph Vertex 

The value of any vertex y of a signal flow graph can be expressed as a linear com- 
bination of vertex value edge gain products as follows: 

where the y 's  a r e  dependent vertices and x is an independent vertex representing 
the input to the system or the source vertex. 

If such a description is combined for all edges and vertices in a graph, we 
then have the set of all vertex values of a signal flow graph expressed as a com- 
bination of individual vertices in matrix form as follows: 



jk Y = GY - BX and parameter P = g 

rearranging and simplifying we have: 

gn 

o r  G ' T = B  

where T = (Y) l /x  and 
G' = (G - I) 

X 



A solution for any transrnittancc ylll/x can be found by solving this ni:ilrLs 
cyuation as follows using Cramer's  rule: 

Det 'm T = - = -  
X Det G' 

This equation can be expanded around row j to yield the following result: 

j + l  j+2 j+k j +n 

X j + l  j +2 j+k j +n 

+ . . . + (-1) (-1) g'.iM!l + (-1) g!;MI2 g!LMIk + . . . + (-1) g! 'MIn 
- -  - Jn (7) 
Ym 

+ . . . + (-1) g;,Mjn (-1) gilMjl + (-1) gi2Mj2 + . + (-1) g; kMj k 

Where M'. = the (j,p) minor of the G' matrix with Col m replaced by B 
JP 

and p = 1, 2, . . . n. 

M = the (j,p) the minor of G' 

' = the (j,p) the element of C' 

1 = the (j,p) the element of the G' matrix with Column m re- 

jp 

gjp 

gJp placed by B. 

Since the expansion was  made with respect to row j ,  all M' and M minors are 
devoid of g.k and the expression may be rewritten as a linear function of g 
shown h e r d  

as 
jk 

a g.k + b 'm - =  
x c g j k + d  

jk' where a, b, e, and d do not contain g 

After inspection of Equation 7, we note that gjk = gik = g i i .  This is so because 
a11 elements of G, GI, and GIf a r e  identical except those in Column m and those 
on the main diagonal representing self loops. For  Column m, two cases  exist, one 
in which g! does not lie in Column m and one in which g! does fall in Column m. Jk Jk 



Thc f i rs t  case guarantecs that g;,: is equal to gjli i f  it does not fall on the main 
diagonal and this is  true as shown below. The second case causes g! ! to vanish 
by being replaced by h. and thus the transfer €unction ym/x can be considcred a 
spccial case of Equation 8 with a ,  the coefficient of gjk set equal to zero. Since 
it is  not meaningful in a real system to consider a parameter which relates a 
network variable to itself, no self loop g 
is true generally. It follows directly that: 

J 1'. 
J 

is possible and consequeiitljr Equation 8 
jk  

jSkMf a = (-1) where K # m y  j 
jk 

j+lgt  + (-1) j +2 g! + . . . + (-1) j +m b MI + . . . + (-1) j +n g! 'M! 
Jn Jn jl jl 32 52 J Jm 

b = (-1) 

where P # K 

K # m ,  j 

where P # K 

This is an important and useful result  which allows us to consider a great 
conceptual simplification. We  can now discuss a new signal flow graph representa- 
tion of any arbi t rary system which shows only the elements of interest in sensi- 
tivity analysis namely, the elements controlling the transmittance T with the 
parameter P explicitly represented as shown in figure 2. This figure graphically 
synthesizes the mathematical expression of equation (8) where a, b, -c, and l/d 
are directed edges of the graph 
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Figure 2 

Simplified Signal Flow Graph Representing Any 
System and Showing Parameter  P Explicitly 



To prove this result we need only compute the transmittance through thc 
system and arrange it in the form of equation (8): 

identifying terms we  have: 

Partial  Deriva tive 

Using the graph of Figure 2, we can now proceed to develop sensitivity re- 
lationships which are significant in respect to any signal flow graph, indeed any 
system. By differentiating equation (9) w e  can derive an expression for partial 
derivatives which allows us  the liberty of computing them by means of transfer 
functions alone. 

Differentiating (9) with respect to P: 

8T 
ap 

(g12 ‘813 8 34 g 42 ) 8  34 - =- 
(I - ‘23 ‘34 “42)’ 

Expression 11 can be factored into two parts:  

- -  aT - T T where T and T, have the following significance: ap 1 2  1 L 

’2 
1 x  

‘12 “13 ‘34 ‘42 - - 
- ‘23 ‘34 ‘42 

T = - =  the transmittance of transfer function from the 
input vertex x of Figure 2 to the input vertex y2 
of the edge representing parameter P. 

(12) 

T is directly interpretable as the transfer function from input to the parameter in 
question. For an example of T1 consider any system voltage transfer function 
where the sensitivity with respect to a resis tor  in the system is sought. T1 is the 
transconductance from system input to the resis tor ,  i.e., the resis tor  current 
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d ivided by the system input voltage which produces that current. Such a transfer 
function can be derived for any discrete parameter. 

= the transmittance o r  transfer function 
from the output vertex y3 of the edge 
representing parameter P to the output 
vertex y4 with the input x set to zero. 

y 4  - 534 T = - -  
2 x' g g  - '23 34 42 

T2 is similarly interpretable as the transfer function from the output of the param- 
eter  in question to the output of the system. In the example given above T2 is the 
ratio of output voltage to the voltage across  the resis tor  and again, such a transfer 
function can be found for any system parameter. Since the proof of this depends on 
the generalized flow graph representation of Fig. 2,  where P = gZ3 is an independent 
edge, it is necessary when one interprets this topological statement in te rms  of 
general system significance to' preserve the multiplicative relationship y3 = P y2. 
This can be done for any parameter as shown in the example above where R ,  a re- 
sistance, is multiplied by a transconductance T1 and a voltage transfer function T2. 
Dimensional analysis indicates that a voltage transfer function should be produced 
which of course is true. 

The justification for equation (13) can be demonstrated if we remove edges 
g12 and g13 from Figure 2,  then add an artificial input vertex x' to form a new 
graph as shown in Figure 3 .  Equation (13) is the transmittance y4/xf of this modi- 
fied graph which is itself a topological statement of the method of computing the * 

required factor, 

g42 

Figure 3 

Sub-Graph Representing Part of the Partial 
Derivative Calculation by Means of Transmittance 

or  Transfer Function Analysis 



1,ognrithmic Sensitivity 

Starting with the result obtained for absolute sensitivity of the gencrnlizcd 
syqtcm as represented by the signal flow graph of Figure 2,  we can now proceed to 
coppute the logarithmic sensitivity. Repeating equation (11) we have: 

The logarithmic sensitivity given in Equation 2 can be found by simply multiplying 
8T/BP by P and dividing it by T as shown below: 

(1.5) 

This form is altogether satisfactory for practical use in the computer if an al- 
gorithm for polynomial arithmetic is available. However, to show its relationship 
to the return difference sensitivity formula defined by Bode‘, we will proceed. 
Multiplying Equation 11 by P and dividing by T yields: 

Aftcr some algebraic manipulation, w e  have: 

sp ‘23 ‘34 ‘42 (g12 ‘23 ‘34 i- ‘13 ‘ )  34 
- G 1 - - T 

Each of the t e rms  in the sensitivity equation in this form has a topological signifi- 
cance as follows: 

g g g = The transmittance from the input of parameter P (18) 
23 34 42 (element gZ3) through the network and back to the 

input node with the parameter P input terminal 
opened. The te rm 1 - 
difference defined by Bo e. 

is the return ‘y ‘34 ‘42 

g g = return difference = RD (19) 
-g23 34 42 

= The transmittance of the network from input to (2 0) 
output with P disconnected. ‘13 ‘34 



of the transniittaiice (2 1) 

Although this result is well known,* it is somewhat easier  to evaluate the logarithmic 
sensitivity by the more direct  method of multiplying the partial derivative by the 
parameter I? and dividing by the transfer function T as outlined in equation (E). 

Example of the Computaticrii of Prirtial Dcriv a 1' 1vc 

In order to illustrate the significance of equations 11, 12 ,  and 13 by means of 
an example, let u s  consider the simple electrical network of Figure 4 and the sensi- 
tivity of the network voltage transfer function Vo/Vin with respect to the capacitor C. 

R l =  l 0 Q  R 2 =  BR 

Figure 4 

Simple Electrical Network 

The first step in our process is to compute TI. Since it is our objective to 
do this in a way that is suitable to a digital computer, we shall use one of many 
available transfer function analysis programs. Because the network is simple and 
computing time should be small  and we can achieve the advantage of accuracy and 
numerical stability using the topological network analysis program of Calahan 
discussed in Reference [ 7 ] .  Figure 5 shows the computer input and output for T1 
and Figure 6 shows the input and output €or T2. 

*See expression 4-22, page 58 of Reference [ 11; see also expression 2-67, page 
121 of Reference 141. 
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Figure 5 

Computer Input and Output for  TI 
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Figure 6 

Computer Input and Output for T2 

and the partial derivative is found by taking the product of T1 and T2. Viz: 

3 .1 s ( s  + 2) A T  = 
Zc (s + 1.2 rt j 1.833)2 



W e  can proceed to e-mluate logarithmic Sensitivity accordin? 1 0  

follows: 

rp in this case,  is the voltage transfer function of F i p -  

Sum in a r y  

The problem of computing sensitivities for any arbi t rary system has been 
discusscd. A mathematical development using the theory of sigxal flow graphs 
proves in a relatively simple way that sensitivity can be computed as the product 
of certain transfer functions derived from the system in question. This allows the 
use of general purpose transfer function computer analysis programs and reduces 
the problem of sensitivity to one that has already been solved. Further develop- 
ments in extension of this theory to the general case of root sensitivity should be 
fruitful. 

References 

1-1. W. Bode, Network Analysis and Feedback Amplifier Design, pp 
D. Van Nostrand, 1945. 

S. J. Mason, "Feedback Theory 
Proceedings of the IRE, pp 1144-1156, Sept. 1953. 

S. J. Mason, "Feedback Theory 
Proceedings of the IRE, pp 920-926, July 1956. 

5. G. Truxall, Automatic Feedback Control System Synthesis, pp 
McGraw-Hill, 1955. 

C. L. Coates, "Flow-graph Solutions of Linear Algebraic Equations," - IRE 

Some Properties of Signal Flow GrarF  

Further Properties of Signal Flow Grant 

Transactions on Circuit Theory, pp 170ff, June 1959. 

D. A .  Calahan, Computer Aided Network Design and Analysis, Prelimina-- 
Edition, McGraw-Hill, 1967. 

D. A .  Calahan, "Linear Network Analysis and Realization Digital Computer 
Programs : an Instruction Manual ,'I University of Illinois Engineering Bulletin 
472, Vol. 62, No. 58, Feb. 1965. 

J. E. Van Ness, J. M. Boyle, and F. P. Iinad, "Sensitivities of Large, Multiple- 
loop Control Systems,'' IRE Transactions on Automatic Control, pp 308-315, 
July 1965. 

B. S. Morgan, "Computational Procedures for the Sensitivity of an Eigenvall- 
p. 197, Vol. 2, Electronics Letters,  June 1966. 


